Технологии будущего 2: Наш новый фреоновый паровоз (11 фото)
- 26 августа 2019
- Познай МИР
Иногда просто удивительно, насколько люди готовы основывать универсальность своих знаний об окружающем их мире на примерах из повседневной жизни.
Источник:
Например, у каждого перед глазами при словах "Наш паровоз вперёд летит", скорее всего, встанет перед глазами вот такая картинка:
Источник:
А теперь - гипотетически представьте себе, что вместо обычной для паровоза воды мы зальём в локомотив фреон и заставим его кипеть в котле и давить на поршни паровоза. Что поменяется на верхней картинке?
(подсказка: У паровоза пропадёт "дым из трубы". Который, не дым, а водяной пар. Который, на самом деле - сконденсировавшиеся в результате расширения водяного пара мельчайшие капельки жидкой воды.)
Фреон, в отличии от воды, при расширении в турбине или паровой машине, не конденсируется до состояния жидкости. Это его базовое термодинамическое отличие от воды, которое, как мы поймём ниже, позволяет проделывать с фреонами некоторые инженерные фокусы, которые невозможно проделать с водой.
Конденсация воды в поршневой паровой машине в конце цикла расширения пара, в принципе, безвредна. В конечном счёте, Steampunk даже как-то немыслим без весёлого паровозика, мчащегося куда-то в красивых клубах водяного пара (точнее - водяного конденсата, но это уже, я надеюсь, понятно всем читающим).
Внутри же вращающейся с высокой скоростью паровой турбины, конденсация водяного пара на последних ступенях не приводит ни к чему хорошему. Именно поэтому тепловые электростанции крайне неохотно любят опускать ниже 30% от их номинала - на таких режимах работы конденсация водяного пара на последних ступенях паровых турбин приводит вот к таким печальным последствиям:
Источник:
Как видите, даже высококачественная сталь буквально "разъедается" водяным конденсатом - в реалиях работы современных паровых турбин мельчайшие капельки иногда врезаются в их лопасти на скоростях, близких к скорости звука.
С чем же связано уникальное качество фреона?
Тут нам надо будет немного погрузиться в термодинамику - я лишь постараюсь изложить все детали процессов максимально доступно для неподготовленного читателя. Если у кого-то в процессе изложения термодинамических приколов и закосов вдруг повиснут интеллектуальные паруса - можно сразу идти к выводам. Они - в конце статьи.
Любая тепловая машина работает в рамках какого-нибудь термодинамического цикла. Если мы говорим о "холостом ходе дизеля - 400 оборотов в минуту", то это означает, что наш дизельный мотор успевает за 1 минуту совершить 400 термодинамических циклов имени товарища Дизеля. Эти циклы Дизеля в нашем двигателе последовательно включают в себя фазу всасывания воздуха, фазу его сжатия, впрыск дизельного топлива, фазу рабочего хода и фазу удаления продуктов сгорания из цилиндров двигателя. При этом полезную работу двигатель Дизеля совершает только на фазе рабочего хода, а все остальные фазы необходимы только для обеспечения работы самого устройства.
Источник:
Диаграмма T-s идеального цикла Дизеля. Полезная работа совершается на участке CD. Объяснение смысла диаграммы T-s - ниже по тексту.
При увеличении числа оборотов растёт число циклов Дизеля за единицу времени - и мы можем снимать с двигателя большую мощность, даже если в каждом из циклов мощность будет неизменной.