10 заковыристых математических задач, над решением которых бьются до сих пор (11 фото)
- 20 февраля 2023
- Познай МИР
Гипотеза Берча и Суиннертон-Дайера
Источник: techinsider.ru
Еще одна “задача тысячелетия”, за решение которой Институт Клэя одарит миллионом долларов. Не-математику достаточно трудно хотя бы в общих чертах сформулировать и понять, в чем же суть гипотезы. Берч и Свиннертон-Дайер предположили определенные свойства эллиптических кривых. Идея заключалась в том, что ранг кривой можно определить зная порядок нуля дзета-функции. Как говорится, ничего не понятно, но очень интересно.
Эллиптическими кривыми называются такие линии на графике, которые описываются, на первый взгляд, безобидными уравнениями вида y²=x³+ax+b. Некоторые их свойства чрезвычайно важны для алгебры и теории чисел, а решение данной задачи может серьезно продвинуть науку вперед. Наибольший прогресс в нахождении ответа на эту нерешенную математическую задачу был достигнут в 1977 году коллективом математиков из Англии и США, которые смогли найти доказательство гипотезы Берча и Суиннертон-Дайера для одного из частных случаев.
Проблема плотной упаковки равных сфер
Источник: techinsider.ru
Эта фотография иллюстрирует нерешенную математическую проблему плотной упаковки сфер
Это даже не одна, а целая категория схожих проблем. Причем мы сталкиваемся с ними ежедневно, например, когда хотим разложить фрукты на полке в холодильнике или как можно плотнее расставить бутылки на полке. С математической точки зрения необходимо найти среднее количество контактов ("поцелуев", также называется контактным числом) каждой сферы с остальными. На данный момент есть точные решения для размерностей 1-4 и 8.
Под размерностью или измерением понимается количество линий, вдоль которых размещаются шары. В реальной жизни больше третьей размерности не встречается, однако математика оперирует и гипотетическими значениями. Решение этой задачи может серьезно продвинуть не только теорию чисел и геометрию вперед, но также поможет в химии, информатике и физике. Пожалуй, это одна из немногих нерешенных математических задач, которая имеет четкое практическое применение.
Проблема развязывания
Источник: techinsider.ru
И снова каждый день встречающаяся проблема. Казалось бы, что сложного — узел развязать? Тем не менее, вычисление минимального времени, необходимого для этой задачи является еще одним краеугольным камнем математики. Трудность в том, что мы знаем, вычислить алгоритм развязывания можно, но его сложность может быть такой, что даже самый мощный суперкомпьютер будет считать слишком долго.